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1 Vision

1.1 Segmentation
The object recognition in Nao’s camera image and identification of the field and objects
on it is an essential part of playing soccer. The biggest problems for most color-table
based methods are the inability to cope with changing light conditions and the need to
generate the color-table, which can be very time consuming. Changing lighting condi-
tions (e.g. between daylight and artificial light which is common at the German Open)
make it impossible to classify objects solely based on their color. Also, differing ball
colors (Robocup 2010) or unexpected carpet colors (Robocup 2011) pose another prob-
lem for purely color based methods. Therefore, a real-time capable segmentation with
no need for calibration would be advantageous. By applying the knowledge of the ob-
jects’ shapes we developed a object recognition algorithm that can handle changing light
conditions and colors robustly without the need for prior calibration.
An in-depth description of the method is available in [1] (in German).

1.1.1 Program flow
Our object recognition is divided into several detection and filtering stages which are
using the YCbCr color space. The order in which these stages are processed is of pivotal
importance as each stage adds new information about the current image. These new
pieces of knowledge are then used by later stages as references of the contents of the
image. Examples for information which is passed on between the stages are distinctive
color values of previously found objects and knowledge about their shape, position, size
and rotation. The object recognition is done using the following five object properties
which are not affected by the brightness of the objects in the picture:

property example
difference in color difference between the color of the ball and the color of the ground

shape circular shape of the ball
size the playing field’s carpet is the biggest in size

position the ball can only be within the bounds of the playing field
rotation goalposts have a vertical orientation

Table 1.1: Object properties used during segmentation

However, a simultaneous use of all properties listed in table 1.1 is rare. Instead, each
stage uses a selection of properties which is most suitable for its task.
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1.1.2 The stages of the segmentation
First, the average color tone will be identified by finding the dominant color in the
image, most likely the color of the playing field. In further steps, other objects can
be distinguished from the field based on this information. All objects are complete
or partially located in a specific area limited by the outer field lines. Finding these
segments is part of the second step which decomposes the image into connected parts
by examining the brightness channel. In a following step all line segments are assembled
together to reveal the true game field lines and identify also possible false detections. The
next step is designated to the search for the ball. Relying upon the previously collected
data, field and line color as well as the circular shape of the ball, the its position can
be determined. Knowing the position of the game ball makes the algorithm capable to
obtain its color. The last and most challenging step is to find the goalposts. Once again,
the program relys on the previously collected data which delivers all known color values.
Goal detection is done by examining the Cb-Channel to match vertical edges above the
detected field border which will finally lead to the position of the goalposts.

Figure 1.1: Schematics of the program flow during segmentation

1.1.3 Dataset for algorithm evaluation
For the evaluation of our image processing algorithms regarding detection rates we have
implemented a database of testing images which can be found at [1]. This database
contains about 600 images that we have captured with the robot’s cameras. Each im-
age contains a typical scenario found in games. Furthermore, we also included some
specifially selected rare cases for evaluating the limits of our algorithms. During the
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RoboCup German Open 2009 and 2010, as well as the RoboCup 2010 in Singapore, we
captured those live images with our Nao robots. Based on this set of images that we have
in our database, we developed our algorithms intending that also new game situations
that were not covered by our images can be handled well. To gather a high diversity of
game situations, we have captured those images from different positions, angles and in
differing light conditions. The following table contains a frequency distribution of game
objects we have captured in our database.

visible objects frequency of occurence
ball (total) 40.2 %

ball (partially covered) 7.8 %
blue goal (both goalposts) 13.3 %
blue goal (single goalpost) 18.2 %
yellow goal (both goalposts) 11.3 %
yellow goal (single goalpost) 21.2 %

at least one visible line 89.0 %
no visible playing field 0.3 %

Table 1.2: Frequency distribution of game objects in our database

For every image in our database, the listed ground truth data from table 1.3 has been
created manually. This data can then be used for an automatic quality evaluation of the
developed algorithms.

object data structure in database
field borders Approximation by two lines
field colors (Ȳ , C̄b, C̄r)-triple and information about visibility
field lines several lists of coordinates that reside on edges of field lines

ball coordinate of the center of the ball, radius and information about visibility
goals coordinates and width of the post’s bottom

Table 1.3: Stored data structure format of game objects of our database are presented
in this table. The triple (Ȳ , C̄b, C̄r) is defined as the arithmetic mean of the
color values of all field pixles in a picture.
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1.1.4 Results

detection of hit rate false-positive rate
field color 100.0% 0.3%

field borders 98.8% 1.5%
field lines 90.0% 4.6%

ball 99.2% 0.17%
goal 91.5% 9.0%

Table 1.4: Hit rates and flase-positive rates

Table 1.4 shows the hit rate and false-positive rate of the object recognition algorithm.

1.1.5 Program Runtime

function runtime in ms Number of accessed pixels in %
min avg max min avg max

determination of field color 0.72 0.85 0.99 0.59 0.59 0.59
edge detection 5.8 6.3 7.6 3.1 3.4 4.1

detection of the field borders 0.50 0.82 1.7 0 0 0
line detection 0.31 4.8 7.3 0 0.23 0.85
ball detection 0.66 3.2 4.3 3.1 3.1 3.2
goal detection 2.4 2.7 2.9 0.83 0.83 0.84

total 10.4 18.7 24.8 7.62 8.15 9.58

Table 1.5: Runtimes and numbers of accessd pixels

Table 1.5 shows the runtime and memory access operations for the six main program
parts measured during a five minute test game. All data are aggregated to its minimal,
average and maximum values. The memory access operations to read the pixel values
are displayed in relation to the whole image size; obtained from the test database and
computed respectively. Owing to fact of other processes running in parallel to the
segmentation, the minimal and maximal values are the median of 1 % of the true minimal
and maximal values.
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1.2 Localization
The localization method has been completely redesigned for the 2011 events.
The basic idea is to directly estimate the camera projection matrix from the segmented

field-lines in the image instead of using the robot’s kinematics or attitude sensors. This
projection of field-lines is then used to find a complete set of hypotheses of the player’s
position, from which the true position can be determined by using prior data.
This method increases robustness of the localization in case of permanent camera

movement (e.g. after a robot fell), fast head motions or external influences, e.g. in a
fight with an opposing robot.

1.2.1 Estimating the projection matrix
Given the field of view and approximate height above the ground of a player’s camera,
we can determine an error function ferr(θ, σ) with roll θ and pitch σ of the camera
according to the following postulates of projected field-lines:

• All field-lines (excluding the center-circle which is treated differently in the seg-
mentation) are either orthogonal or parallel to each other:
fang =

∑
i,j

min(|∠(i, j)− π
2 |, |∠(i, j)|) for i, jεlineθ,σ

• The width of every field-line is 5 cm:
fwidth =

∑
i

width(i) for iεlineθ,σ

By weighting these two error functions in ferr = wangfang + wwidthfwidth we can generate
an error-function in θ-σ-space whose global minimum can be found reliably and with
low computational cost using a simple hill-climbing algorithm.

1.2.2 Hypotheses Calculation
To compute all position hypotheses (x, y, α) on the field we use a brute-force method
matching the projected field-lines and goal-posts to the known model of the playing field.
As the lines are either parallel or orthogonal, there are only 4 possible directions α of
the robot. The number of possible positions can further be reduced by only considering
positions matching an intersection of the projected lines to an intersection in the model
(i.e. either a corner or a T-junction). All remaining position candidates are then scored
according to their conformance to the model, and implausible positions (e.g. having a
3 m long projected line where there only should be a 60 cm long line) are rejected. The
remaining position candidates constitute the set of hypotheses which is used together
with hypotheses from previous frames and odometry data to estimate the real position
of the robot.
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Figure 1.2: Segmented image and hypotheses calulated solely from this image
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2 Motion

2.1 Walking engine
Until the beginning of 2010 we used closed-loop walking motions evolved through a ge-
netic algorithm. These motions were fast but not omni-directional (eventhough walking
along a curve was possible). This was a big disadvantage at the German Open 2010,
so we decided to develop a completely different walking engine. Our walking engine,
introduced in Robocup 2010 and refined in 2011 is based on a parameterizable walking
model similar to [2] and is supported by a newly developed balancing algorithm. The
big advantage of this system is full omni-directional capability and the ability to make
fast direction changes whilst still being very stable.
The new walking engine was tuned for stability and speed manually and achieved forward
speeds in excess of 300 mm/s.

2.2 Motion editor
The NaoMotionEditor is a replacement of Aldebaran’s Choregraphe. The main purpose
is to capture key frames directly from the robot, manipulate them and interpolate with
a Groovy scripting engine between them. There exist already predefined Groovy scripts
which define a linear and a smooth interpolation between two frames. These captured
motions are saved in a XML file and can be later exported to a team dependent file
format. To manipulate frames exist a variety of predefined operations like duplicate,
mirror, move and show frames. The architecture of the editor is designed to add new
functionality fast, so new requirements and features can be added on demand.

Figure 2.1: Example of a goalkeeper motion.
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3 Framework

3.1 NIO
Our NIO (Nao Input Output) Framework is an independent piece of software that runs
on Nao robots and extends the Aldebaran Robotics NaoQI framework.

The motivations for creating our own framework:

• Inconsistency of NaoQI’s API

• Very limited debugging capabilities of NaoQI framework

• No need for a time intensive NaoQI restart after changes to parts of the software
(e.g. motions, strategy)

• No thread safety of certain NaoQI calls

• Lots of NaoQI functionality we actually don’t need

• Possibility of writing plain C instead of C++ code

The basic functionality of our NIO Framework is defined by a Unix Domain Socket client
server pair. We have built a simple C++ module for the NaoQI framework that exports
a subset of the NaoQI calls through the socket to the requesting process. This module is
compiled as a shared library and will be linked against our actual kernel (core executable
of our framework). Our exported API calls are kept very simple and performant, the
subset is small and threadsafe. On the other hand, NIO consists of a series of subsystems.
Each subsystem is generally independent of the others and serves one single aspect.

3.2 Memcpy improvements
Since memcpy seems to be a real bottleneck for video processing on Naos, we did some
more investigation into optimizing its performance for larger chunks that need to be
copied locally. AMD’s V4L webcam driver for Geode seems to have serious driver issues
with memory mapped I/O for video frames, so that we are forced to use Aldebarans
NaoQI routines and copy video frames into a shared memory for NIO. We therefore
measured the shipped memcpy function (libc) in combination with Geodes Time Stamp
Counter processor registers (RDTSC) in order to gain current transfer rates. The in-
vestigation showed transfer rates of approximately 154 MB/s. Architecture dependent
compile flags and other GCC optimization options did not result in significantly better
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transfer rates. Since AMD’s Geode has built-in MMX technology, we have developed
our own userspace memcpy, which exploits the provided MMX instruction set. We
could improve memcpy from 154 MB/s to 675 MB/s, which has an extensive impact in
performance for frame transferal into our shared memory.

3.3 JVM communication and performace evaluation on AMD
Geode

To improve development speed and lower the initial training of new team members we
have researched and developed a proof of concept implementation of our NIO framework
in Java.

Method Time in ms
C-Server 0.1051

Oracle Java 1.6.20 0.1380
JamVM (no JIT) 0.7320

Table 3.1: Time for two TCP/IP function callbacks (1 TX, 1 RX).

Our tests in JVM and JIT speed indicated that Java is reasonably fast for strategy
development and testing of prototype code. We plan to port our complete code base
which is responsible for the strategy in the next few month to Java. The communication
will be done by a TCP/IP connection for exchanging data from NaoQI to NIO and vice
versa. Furthermore, we plan to generate the communication code layer by a program
and evaluate the use of alternative communication channels like POSIX pipes and direct
mapped memory which is also supported by JNI.

3.4 NaoControl
NaoControl is a monitoring program for our robots. It provides a virtual playing field
showing the robot’s and the ball’s location. The Naos send their own and the ball’s
supposed position and an estimated localization quality to the program. With this, we
can easily control whether the localization is fine or not. Also, the robot’s rotation and
field of vision is displayed.
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Figure 3.1: Screenshot of our NaoControl application.

Next to this, it is possible to show the actual images of the Naos’ webcams. Those can
be the real pictures or the segmented ones. We are able to send commands to the robots
for testing them. The virtual playing field and its lines can be well customized, so new
dimensions cause no problems. NaoControl is yet still in progress. In the near future
it will be enhanced with simulation tasks. New playing strategies will be developed
and tested with the assistance of NaoControl. For this purpose it provides simulated
robot-behavior.

3.5 Networking - Naonet device driver
Our Nao robots do not communicate via IP-based traffic. Statically assigning IP ad-
dresses and netmasks can lead to misconfigurations during immediate competition setups
of Naos or reboots of robots due to system failures. Therefore, we implemented a zero-
configuration Layer 2 Ethernet protocol that runs within the Linux kernel by using the
protocol hook dev_add_pack and Kernel FIFOs for queueing RX as well as TX pack-
ets. Communication happens via device files. A naonet communication manager within
Userland controls the transmission and dispatch of messages. The receive path is there-
fore event-triggered. Several subsystems of NIO can register event-hooks provided as
function callbacks to naonet’s event manager. Depending on the specific event and des-
tination (e.g. striker, defender, goalkeeper) all registered event-hooks will be triggered.
The registration of hooks is priorized, so that high-priorized callbacks can stop the dis-
patch of messages for low-priorized callbacks. To sum up, we hereby have the possibility
to notify other robots via event-driven mechanisms. This feature has shown robust and
reliable communication in the Robocup events.
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3.6 Wiimote control
We have developed a Wiimote remote-controlled Nao movement interface for several
testing purposes. This enables us to play against our developed Nao game strategy or
to efficiently test new motions, which for instance have been set up by our own motion
editor. The Wiimote is conneted via Bluetooth socket to a Bluetooth-enabled host
machine that is within the same subnet as the Nao that will be controlled remotely. On
the Nao-side a server application listens for incoming instructions that are sent from the
host machine. With the help of our software, the host machine can even route multiple
Wiimote connections to various Nao robots.
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